LANDESSTELLE FÜR BAUTECHNIK

Braustraße 2, 04107 Leipzig Telefon: (0341) 977 3710 Telefax: (0341) 977 1199

GZ: L37-2533/11/18

Prüfbericht (Typenprüfung)

Prüfbericht Nr.:

T21-001

vom:

05.01.2021

Gegenstand:

Stahlkassettenprofile der Firmenbezeichnung:

SAB B90/500, SAB B90/500 P, SAB B90/600, SAB B90/600 P

FREISTAAT

SAB B100/500, SAB B100/500 P, SAB B100/600, SAB B100/600 P, SAB B110/600, SAB B110/600 P SAB B120/600, SAB B120/600 P, SAB B130/600, SAB B130/600 P, SAB B140/600, SAB B140/600 P SAB B145/600, SAB B145/600 P, SAB B160/600, SAB B160/600 P, SAB B160/600 P

Antragsteller:

SAB-profiel by

A Tata Steel Enterprise

Produktieweg 2

NL-3401 MG IJsselstein

SAB-Profil GmbH Industriestraße 13 D-36272 Niederaula

Planer:

Ingenieurbüro für Leichtbau

Rehbuckel 7

D-76228 Karlsruhe

Hersteller:

wie Antragsteller

Geltungsdauer bis:

31.01.2026

Dieser Prüfbericht umfasst 3 Seiten und 22 Anlagen, die Bestandteil dieses Prüfberichtes sind.

FREISTAAT SACHSEN

1. Allgemeine Bestimmungen

- 1.1. Die typengeprüften Bauvorlagen können anstelle von im Einzelfall zu prüfenden Nachweisen der Standsicherheit dem Bauantrag beigefügt werden.
- 1.2. Die Typenprüfung befreit nicht von der Verpflichtung, für jedes Bauvorhaben eine Genehmigung einzuholen, soweit gesetzliche Bestimmungen hiervon nicht befreien.
- 1.3. Die Ausführungen haben sich streng an die geprüften Pläne und an die Bestimmungen dieses Prüfberichtes zu halten. Abweichungen hiervon sind nur zulässig, wenn sie die Zustimmung im Zuge einer Einzelprüfung gefunden haben.
- 1.4. Die typengeprüften Unterlagen dürfen nur vollständig mit dem Prüfbericht und den dazugehörigen Anlagen verwendet oder veröffentlicht werden. In Zweifelsfällen sind die bei der Landesstelle für Bautechnik befindlichen geprüften Unterlagen maßgebend.
- 1.5. Die Geltungsdauer dieser Typenprüfung kann auf Antrag jeweils um bis zu fünf Jahren verlängert werden. Der nächste Sichtvermerk durch die Landesstelle für Bautechnik ist dann spätestens am 31.01.2026 erforderlich.
- 1.6. Der Prüfbericht kann in begründeten Fällen, wie z. B. Änderungen Technischer Baubestimmungen oder wenn neue technische Erkenntnisse dies erfordern, entschädigungslos geändert oder zurückgezogen werden.
- 1.7. Die baustatische Typenprüfung gilt unbeschadet der Rechte Dritter.
- 1.8. Die Typenprüfung berücksichtigt den derzeitigen Stand der Erkenntnisse. Eine Aussage über die Bewährung des Gegenstandes dieser Typenprüfung ist damit nicht verbunden.

2. Konstruktionsbeschreibung

Stahlkassettenprofile der Firmenbezeichnung:

SAB B90/500, SAB B90/500 P,

SAB B90/600, SAB B90/600 P, SAB B100/500, SAB B100/500 P,

SAB B100/600, SAB B100/600 P, SAB B110/600, SAB B110/600 P,

SAB B120/600, SAB B120/600 P, SAB B130/600, SAB B130/600 P,

SAB B140/600, SAB B140/600 P, SAB B145/600, SAB B145/600 P,

SAB B160/600, SAB B160/600 P, SAB B180/600, SAB B180/600 P

aus Flacherzeugnissen gemäß DIN EN 10346 Tabelle 8. Die rechnerische Blechkerndicke beträgt $t_{\rm N}$ -0,04 mm.

3. Zutreffende Technischen Baubestimmungen

DIN EN 1993-1-1; Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

DIN EN 1993-1-3; Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kaltgeformte Bauteile und Bleche

DIN EN 1993-1-5; Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

Teil 1-5: Plattenförmige Bauteile

4. Geprüfte Unterlagen

Formblätter (Typenblätter) zu den Profilen gemäß Tabelle:

Anlage Nr.:	Profil:	$f_{yk}\left[N/mm^2\right]$	Blechdicken [mm]
1	SAB B90/500	320	0,70 bis 1,50
2	SAB B90/500 P	320	0,70 bis 1,50
3	SAB B90/600	320	0,75 bis 1,50
4	SAB B90/600 P	320	0,75 bis 1,50
5	SAB B100/500	320	0,70 bis 1,25
6	SAB B100/500 P	320	0,70 bis 1,25
7	SAB B100/600	320	0,75 bis 1,50
8	SAB B100/600 P	320	0,75 bis 1,50
9	SAB B110/600	320	0,75 bis 1,50
10	SAB B110/600 P	320	0,75 bis 1,50
11	SAB B120/600	320	0,75 bis 1,50
12	SAB B120/600 P	320	0,75 bis 1,50
13	SAB B130/600	320	0,75 bis 1,50
14	SAB B130/600 P	320	0,75 bis 1,50
15	SAB B140/600	320	0,75 bis 1,50
16	SAB B140/600 P	320	0,75 bis 1,50
17	SAB B145/600	320	0,75 bis 1,50
18	SAB B145/600 P	320	0,75 bis 1,50
19	SAB B160/600	320	0,75 bis 1,50
20	SAB B160/600 P	320	0,75 bis 1,50
21	SAB B180/600	320	0,75 bis 1,50
22	SAB B180/600 P	320	0,75 bis 1,50

5. Prüfergebnis

- 5.1. Die unter Ziffer 4 aufgeführten Unterlagen wurden in baustatischer Hinsicht geprüft.
- 5.2. Sonstige bauordnungsrechtliche oder andere behördliche Anforderungen waren nicht Gegenstand der Prüfung.
- 5.3. Der Gegenstand der Typenprüfung entspricht den unter Ziffer 3 aufgeführten Technischen Baubestimmungen.
- 5.4. Die Werte in den Formblättern gelten, wenn für die Blechdicken die Minustoleranzen nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)" eingehalten werden.
- 5.5. Unter Beachtung dieses Prüfberichtes und den Vorgaben nach den geprüften Unterlagen bestehen gegen eine Ausführung und Anwendung der Trapezprofile in den vorgegebenen Grenzen aus baustatischer Sicht keine Bedenken.

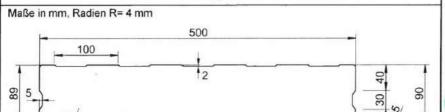
6. Rechtsgrundlagen

Die Landesdirektion Sachsen - Landesstelle für Bautechnik - ist gemäß § 32 DVO-SächsBO¹ Prüfamt zur Typenprüfung; zur Typenprüfung von Standsicherheitsnachweisen siehe die jeweilige Landesbauordnung und § 66 Abs. 4 Satz 3 der Musterbauordnung (Fassung 2002).

Leiter

Dr.-Ing. H.-A. Biegholdt

Bearbeiter


Christian Kutzer

Anlagen: Siehe Tabelle unter Ziffer 4

DVOSächsBO vom 02.09.2004 (SächsGVBI. S. 427), in der zum Zeitpunkt der Erstellung dieses Prüfberichtes geltenden Fassung

SAB B90/500

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 1 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

FREISTA Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f., =

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft ⁶⁾		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
blech-	ment	Litadana	goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	e
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a,B} = 1	100 mm	I _{a.B} = :	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn				kN	/m	
0,70	3,66	7,56	/		3,04	2,86		3,26	80,60	12,79	-	19,15
0,75	4,24	8,75	/	/	3,52	3,31	-	3,77	93,28	14,80	-	22,16
0,88	5,40	11,65			4,84	4,58	-	5,15	149,68	20,77		30,37
1,00	6,48	14,32	/	///	6,05	5,76	-	6,43	201,75	26,28		37,95
1,13	7,36	16,26	1		6,87	6,54	(-	7,30	229,07	29,84	-	43,09
1,25	8,17	18,05			7,63	7,26	-	8,10	254,29	33,12	4	47,83
1,50	9,86	21,78	/	/	9,20	8,76	-	9,78	306,83	39,97	-	57,72

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung | Maßgebende Querschnittswerte

Nenn-	The second section is a second	The state of the s		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheitsmomente		Quer- schnitts- fläche
blech- dicke	ment	lagerkraft 7)		M/R-I	nteraktion (ε	= 1)		last			
8)			Stützm	Stützmoment		Auflagerkraft					Hadrio
t _N	mm kNm/m kN	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+ eff	I- eff	Ag
mm		kN/m	kNr	n/m	kN	/m	kN/m	kN/m²	cm⁴/m	cm ⁴ /m	cm ² /m
0,70	2,90	5,22	5,41	3,98	25,22	13,05		0,082	87,4	61,4	10,50
0,75	3,36	6,04	6,26	4,61	29,19	15,10		0,088	101,2	71,1	11,25
0,88	4,49	8,32	7,28	5,80	50,91	20,80		0,104	118,4	84,5	13,20
1,00	5,53	10,42	8,23	6,90	70,95	26,06		0,118	134,2	96,8	15,00
1,13	6,28	11,84	9,34	7,83	80,56	29,59		0,133	152,4	109,9	16,95
1,25	6,97	13,14	10,37	8,70	89,43	32,85		0,147	169,1	122,0	18,75
1.50	8.41	15.85	12.52	10.49	107.90	39.63		0,177	204.1	147.2	22,50

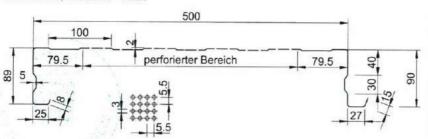
1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{\text{O}}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{\text{O}}/\gamma_{\text{M}}}\right)^{\varepsilon} \; \leq \; 1$$

$$\frac{V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} \leq 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} > 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} - 1\right)$$

$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} > 0.5$$
:

$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} + \left(\frac{2 \cdot V_{Ed}}{V_{w,Rk}/\gamma_M} - 1\right)^2 \le 1$$


- 3) Sind keine Werte für M^o_{RkB} und R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w Rk} keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_s als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

alle Zwischenauflagerwerte für Windsog um 25%

SAB B90/500 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Maße in mm. Radien R= 4 mm

Anlage 2 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
blech- dicke	ment	A Parky 6 Partie Token 60	J-1111	Quer-			L	ineare Int	eraktion (ε	= 1)		
8)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	e
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,8} = 100 mm I _{a,8} = 300 mm			300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B} M ⁰ _{Rk,B}		M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			kN	/m	
0,70	3,57	6,96	/	1	2,89	2,74	12	3,15	87,48	12,42	-	17,51
0,75	4,13	8,06	/		3,34	3,17	-	3,65	101,24	14,37	-	20,26
0,88	5,02	10,72	/	1	4,61	4,42	15	5,01	180,79	20,41	() () () () () () () () () ()	29,26
1,00	5,84	13,18		/	5,79	5,58	0.00	6,27	254,23	25,98	-	37,57
1,13	6,63	14,96			6,57	6,34	-	7,12	288,66	29,50	-	42,66
1,25	7,36	16,61			7,30	7,03	-	7,90	320,44	32,75	_	47,35
1,50	8,88	20,04	/		8,81 8,49		-	9,54	386,64	39,51	4.5	57,14

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung Maßgebende Querschnittswerte Zwischenauflager 1) 2) 3) 4) 7) Nenn-Feldmo-Endauf-Eigen-Trägheitsmomente Querblechment lagerkraft 7) last schnitts-M/R-Interaktion ($\epsilon = 1$) dicke fläche Stützmoment Auflagerkraft Querkraft t, M_{c.Rk,F} Mº BKB R_{w.Rk.A} RORK,B M REE I-R_{w.Rk.B} $V_{w,Rk}$ |+ eff A, q mm kNm/m kN/m kNm/m kN/m kN/m kN/m² cm4/m cm4/m cm²/m 0,70 2.81 4,86 5.56 3,89 21,58 12,15 0.082 73.8 56,6 10,50 0.75 3,25 5.62 6.43 4.50 24,97 14,06 0.088 85,4 65,5 11,25 0.88 4,35 8,06 7,40 5,74 47.05 20.15 0.104 98.9 68,2 13.20 1.00 5,37 10,31 8.29 6.88 67.44 25,78 0,118 111,4 70.7 15,00 1.13 6.10 11,71 9,41 7,81 76,57 29,27 0.133 126,5 80,3 16,95

M/R-Interaktion

6,77

8,17

1,25

1,50

$$\frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

12,99

15,68

10.46 2) M/V- Interaktion

8,67

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$

85.00

102,57

32,49

39.21

0,147

0.177

 $\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \hspace{-0.1cm} > \hspace{-0.1cm} 0.5 \hspace{-0.1cm} : \hspace{-0.1cm} \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} +$

89,1

107.5

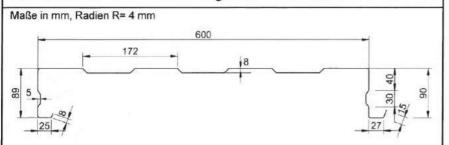
18,75

22,50

140,4

169.4

- 3) Sind keine Werte für M^o_{Rk,B} und R^o_{Rk,B} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w Rk} keine Werte angegeben, entfällt dieser Nachweis.


10.45

12.61

- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_a als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_R < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm. im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert: - alle Zwischenauflagerwerte für Windsog um 25%

SAB B90/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 3 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f_{vk} =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	enauflager	n ^{1) 2) 3) 4) 5)}	(6)
blech-	ment	Lildudiid	goridan	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	te
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{s,B} = 1	00 mm	I _{a,B} = :	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	М ⁰ _{Rk,В}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	I/m	kN/m		kNn	n/m		kN/m			
0,75	3,17	7,29	/	1	2,93	2,76	÷	3,14	77,73	12,33	-	18,47
0,88	4,33	9,71	1	/	4,03	3,82	-	4,29	124,74	17,31		25,31
1,00	5,40	11,93		/ /	5,04	4,80	-	5,36	168,13	21,90	-	31,63
1,13	6,13	13,55			5,72	5,45	72	6,08	190,89	24,87	100	35,91
1,25	6,81	15,04			6,35	6,05	-	6,75	211,91	27,60	82	39,86
1,50	8,21	18,15	1	1	7,67	7,30	-	8,15	255,69	33,31	72	48,10

Chara	kteristis	sche Tragfäl	nigkeitsw	erte für ak	hebende	Flächent	elastung	Maßge	ebende Q	uerschni	ttswerte
Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (a	:= 1)		last			schnitts- fläche
8)			Stützm	oment	Auflage	erkraft	Querkraft				
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ I ⁻ eff	A_g	
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm⁴/m	cm⁴/m	cm²/m
0,75	3,54	5,03	5,22	3,84	24,33	12,58	/	0,085	71,5	76,2	10,80
0,88	4,62	6,93	6,07	4,83	42,42	17,33		0,099	92,8	90,7	12,67
1,00	5,61	8,69	6,86	5,75	59,13	21,72		0,113	112,5	104,0	14,40
1,13	6,37	9,86	7,79	6,53	67,13	24,66		0,128	127,7	118,1	16,27
1,25	7,07	10,95	8,64	7,25	74,52	27,37		0,141	141,8	131,1	18,00

1) M/R- Interaktion

8.53

1,50

$$\frac{M_{Ed}}{M_{Rk,R}^0/\gamma_M} + \left(\frac{F_{Ed}}{R_{Rk,R}^0/\gamma_M}\right)^{\epsilon} \le 1$$

13.21

2) M/V- Interaktion

8.74

$$\frac{V_{Ed}}{V_{W,Rk}/\gamma_M} \le 0.5: \frac{M_{Ed}}{M_{C,Rk,R}/\gamma_M} \le 1$$

$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} > 0.5$$
: $\frac{M_{Ed}}{M_{CRkR}/\gamma_M} + \left(\frac{2}{V_{CRkR}}\right)$

0.170

 $\frac{M_{Ed}}{\sqrt{V_{ex}/V_{ex}}} + \left(\frac{2 \cdot V_{Ed}}{V_{ex}/V_{ex}} - 1\right)^2 \le 1$

158.2

21,60

- 4) Sind für V keine Werte angegeben, entfällt dieser Nachweis.

10.43

- Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

- alle Zwischenauflagerwerte für Windsog um 25%

SAB B90/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Maße in mm, Radien R= 4 mm 600 172 perforierter Bereich 63.5 Anlage 4 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Bearbeiter: Leiter:

SACHSEN

Nennstreckgrenze des Stahlkernes f . =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

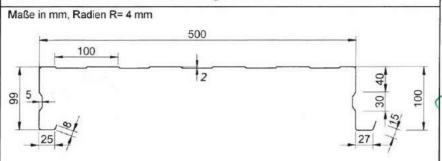
	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	nittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
blech- dicke	ment		gaman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
B)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	e
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{e,B} = 30	00 mm	I _{a,B} = 100 mm I _{a,B} = 300 r			300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M° _{Rk,8}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			kN	/m	
0,75	3,11	6,72	/	1	2,78	2,64	Elec.	3,04	84,37	11,98	-	16,88
0,88	4,15	8,94	1		3,85	3,69	-	4,18	150,66	17,01	-	24,38
1,00	5,11	10,98	1		4,83	4,65	100	5,23	211,86	21,65		31,31
1,13	5,80	12,47			5,48	5,28	-	5,93	240,55	24,58	-	35,55
1,25	6,44	13,84	/		6,08	5,86	-	6,59	267,03	27,29	-	39,46
1,50	7,77	16,70	/	/	7,34	7,07	-	7,95	322,20	32,93	-	47,61

Chara	rakteristische Tragfähigkeitswerte für abhebende Fläch n- Feldmo- Endauf- Zwischenauflager 1) 2) 3) 4) 7)						belastung	Maßge	ebende Q	uerschni	nittswerte	
Nenn-	Feldmo-	-710-000 (1971) (1971)		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Eigen- Trägheitsmomente	momente		
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (8	= 1)		last	9,74		schnitts- fläche	
8)	t _N M _{c,Rk,F} R _{w,Ri}		Stützm	Stützmoment Auflagerki		erkraft	Querkraft				liacrie	
t _N			R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	I-eff	A _g
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m cm4/m		cm²/m	
0,75	3,08	4,68	5,36	3,75	20,81	11,72	/	0,085	69,1	50,5	10,80	
0,88	4,02	6,72	6,16	4,78	39,21	16,80		0,099	77,6	64,1	12,67	
1,00	4,88	8,59	6,91	5,73	56,20	21,48		0,113	85,4	76,6	14,40	
1,13	5,54	9,76	7,84	6,51	63,81	24,39		0,128	97,0	87.0	16,27	
1,25	6,15	10,83	8,71	7,23	70,84	27,08		0,141	107,6	96.5	18,00	
1,50	7,42	13,07	10,51	8,72	85,47	32,67	1	0,170	129,9	116,5	21,60	
110(4)(5)(3)(2)	C214400000	100000 B (7000)	(C. 1400 B) (C. 1400 C)		75.53V.1.5		1	-,	0,0			

M/R-Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^0/\gamma_M} \! + \! \left(\! \frac{F_{\text{Ed}}}{R_{\text{Rk},B}^0/\gamma_M} \! \right)^{\! \varepsilon} \; \leq \; 1$$

2) M/V- Interaktion


$$\frac{V_{Ed}}{V_{w,Rk}/y_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{c,Rk,B}/y_M} \le 1$

 $\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5: \ \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \le 1$

- 3) Sind keine Werte für $M^{o}_{Rk,B}$ und $R^{o}_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w Rk} keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_a als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_s < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- 9) Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm. im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert: alle Zwischenauflagerwerte für Windsog um 25%

SAB B100/500

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 5 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Bearbeiter:

FREISTAAT SACHSEN

Abstand der Befestigungen a, ≤ 621 mm9

Nennstreckgrenze des Stahlkernes f., =

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	ittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
blech-	ment	Lindadiid	goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	.e
t _N M		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	I _{a,B} = 300 mm		00 mm	I _{a,B} = 3	300 mm
t _N	M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m			n/m			kN	/m	
0,70	4,05	7,40	/	1	3,68	3,46		3,92	93,12	15,37	8.	21,79
0,75	4,69	8,56			4,26	4,00	-	4,54	107,76	17,79	-	25,22
0,88	6,23	11,49	1	1	5,78	5,47	(34)	6,08	167,74	24,62	-	34,31
1,00	7,66	14,20	/	/	7,19	6,82	-	7,51	223,11	30,93	-	42,71
1,13	8,70	16,12			8,16	7,74	-	8,53	253,32	35,12	-	48,49
1,25	9,65	17,90	1	/	9,06	8,60	5. 7 .6	9,47	281,21	38,98	-	53,83

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung | Maßgebende Querschnittswerte

	Feldmo-	Endauf- lagerkraft 7)		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheitsmomente		Quer- schnitts- fläche
blech- dicke	ment			M/R- I	nteraktion (8	:= 1)		last			
8)		1	Stützm	oment	ent Auflagerkraft (Querkraft				
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	I- eff	Ag
mm		kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m	cm4/m	cm²/m
0,70	3,59	5,53	7,29	4,72	22,27	13,83	/	0,085	113,5	75,5	10,78
0,75	4,15	6,40	8,44	5,46	25,77	16,00	/	0,091	131,3	87,4	11,55
0,88	5,50	8,61	9,36	6,69	41,36	21,53		0,106	151,2	105,8	13,55
1,00	6,75	10,66	10,21	7,82	55,75	26,64		0,121	169,5	122,8	15,40
1,13	7,66	12,10	11,59	8,88	63,30	30,25		0,137	192,5	139,4	17,40
1,25	8,51	13,43	12,87	9,86	70,27	33,58		0,151	213,6	154,8	19,25
						(20)	/				

1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk,B}}^{0}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk,B}}^{0}/\gamma_{\text{M}}}\right)^{\epsilon} \leq 1$$

$$\frac{V_{Ed}}{V_{W,BF}/\chi_{M}} \le 0.5$$
: $\frac{M_{Ed}}{M_{C,BF,B}/\chi_{M}} \le 1$

$$\frac{V_{Ed}}{V_{WBb}/Y_M} > 0.5$$
: $\frac{M}{M}$

2) M/V- Interaktion
$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für M^o_{Rk,B} und R^o_{Rk,B} angegeben, ist kein Interaktionsnachweis zu führen.
- Sind für V_{w,Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_s < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

- alle Zwischenauflagerwerte für Windsog um 30%

SAB B100/500 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

 Anlage 6 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	nittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
blech- dicke	ment		goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
8)				kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	e
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 100 mm I _{a,B} = 300 mm			I _{a,B} = 100 mm I _{a,B} = 3			300 mm	
t _N	M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M° _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m	kNm/m					kN	/m	
0,70	3,99	6,87	/	/	3,62	3,38	-	3,78	84,52	14,91	-	21,08
0,75	4,62	7,95	1	//	4,19	3,91	-	4,38	97,81	17,26	1.50	24,39
0,88	5,96	10,58			5,53	5,27	-	5,92	206,90	24,11	-	32,40
1,00	7,20	13,00	/	/	6,76	6,52	-	7,34	307,60	30,44	-	39,80
1,13	8,18	14,76	1		7,68	7,40	-	8,33	349,25	34,56	-	45,19
1,25	9,08	16,39	/	/	8,52	8,22	-	9,25	387,70	38,37	-	50,16

Chara	akteristi	sche Tragfäl	higkeitsw	erte für al	hebende	Flächen	oelastung	Maßge	ebende Q	uerschni	ttswerte
Nenn-	Feldmo-	The state of the s		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (8	; = 1)		last			schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				nache
t _N		R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+en	I- aff	A _g
	100000	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m cm4/m		cm²/m
0,70	3,40	5,30	7,00	4,52	21,28	13,24	/	0,085	102,6	62,9	10,78
0,75	3,94	6,13	8,10	5,23	24,63	15,32		0,091	118,7	72,8	11,55
0,88	5,27	7,92	9,24	6,38	35,12	19,80		0,106	131,8	91,2	13,55
1,00	6,49	9,58	10,29	7,44	44,80	23,94		0,121	143,9	108,1	15,40
1,13	7,37	10,88	11,68	8,45	50,87	27,18	1 /	0,137	163,4	122,7	17,40
1,25	8,18	12,07	12,97	9,38	56,47	30,17	1	0,151	181,4	136,3	19,25
							1				

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5: \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$$

 $\frac{V_{Ed}}{V_{WRk}/\gamma_M}$ >0,5: $\frac{M}{M_{CRk}}$

 $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} + \left(\frac{2 \cdot V_{Ed}}{V_{w,Rk}/\gamma_M} - 1\right)^2 \le 1$

- 3) Sind keine Werte für M^o_{Rk,B} und R^o_{Rk,B} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- ⁹⁾ Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

 alle Zwischenauflagerwerte für Windsog um 30%

SAB B100/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Maße in mm, Radien R= 4 mm 600 Anlage 7 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	enauflager	n ^{1) 2) 3) 4) 5)}	6)
blech-	ment	Lindadiid	goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft	i company	Stützmo	omente		Z	wischenau	flagerkräft	е
		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,B} = 1	00 mm	I _{s,6} = :	300 mm
t _N	M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			kN	/m	
0,75	3,63	7,13	1	/	3,55	3,33		3,78	89,80	14,83	9 .	21,02
0,88	4,82	9,58			4,82	4,56		5,07	139,79	20,52	-	28,60
1,00	5,92	11,83			5,99	5,68		6,26	185,93	25,78	-	35,59
1,13	6,72	13,44			6,80	6,45	-	7,11	211,10	29,27	-	40,41
1,25	7,46	14,91	/	1	7,55	7,16	-	7,89	234,34	32,49	82	44,86
1,50	9,00	18,00	1	/	9,11	8,64	-	9,52	282,76	39,20	-	54,13

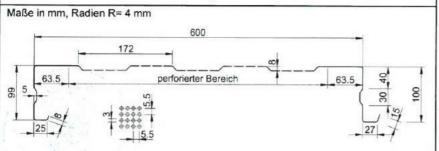
Chara	kteristis	sche Tragfäl	Maßge	ebende Q	uerschni	ttswerte					
Nenn-	Feldmo-	2000		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- In	nteraktion (ε	= 1)		last			schnitts- fläche
8)			Stützm	oment	Auflage	erkraft	Querkraft				liddiid
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+	I-	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm⁴/m	cm4/m	cm²/m
0,75	4,03	5,33	7,03	4,55	21,48	13,33	1	0,087	99,0	96,6	11,05
0,88	5,27	7,18	7,80	5,57	34,47	17,94		0,102	124,3	115,1	12,97
1,00	6,41	8,88	8,51	6,52	46,46	22,20		0,116	147,6	132,2	14,73
1,13	7,28	10,08	9,66	7,40	52,75	25,21	/	0,131	167,6	150,1	16,65
1,25	8,08	11,19	10,72	8,21	58,56	27,98		0,145	186,0	166,6	18,42
1,50	9,75	13,51	12,94	9,91	70,66	33,76	/	0,173	224,5	201,1	22,10

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,R}^0/\gamma_M} + \left(\frac{F_{Ed}}{R_{Rk,R}^0/\gamma_M}\right)^{\epsilon} \le 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5: \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1 \qquad \frac{V_{ij}}{V_{w,Rk}}$$


$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0.5: \ \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5: \ \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für M^o_{RkB} und R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für $b_{_{\!R}}$ < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

- alle Zwischenauflagerwerte für Windsog um 30%

SAB B100/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 8 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f =

320 N/mm²

Abstand der Befestigungen a ≤ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	nittgrößen	an Zwisch	enauflager	n 1) 2) 3) 4) 5)	6)
ment		90	Quer-			L	ineare Inte	eraktion (ε	= 1)		
			kraft		Stützmo	omente		Z	wischenau	ıflagerkräft	е
	b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a,B} = 1	00 mm	I _{a,B} = ;	300 mm
M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	Rº Rk,B	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
kNm/m	kN	l/m	kN/m		kNn					/m	
3,53	6,63	1	1	3,49	3,26	-	3,65	81,51	14,38	-	20,33
4,70	8,81		/	4,61	4,39	-	4,93	172,42	20,09		27,00
5,78	10,83			5,63	5,43	-	6,12	256,33	25,37	-	33,17
6,56	12,30	1		6,40	6,17	-	6,94	291,05	28,80	-	37,66
7,29	13,65	/		7,10	6,85	-	7,71	323,09	31,97		41,80
8,79	16,48	/	1	8,57	8,26	2	9,30	389,84	38,58	-	50,44
	M _{c,Rk,F} kNm/m 3,53 4,70 5,78 6,56 7,29	ment b _A + ü = 40 mm M _{c,Rk,F} R _k kNm/m kN 3,53 6,63 4,70 8,81 5,78 10,83 6,56 12,30 7,29 13,65	ment b _A + ü = b _A + ü = 40 mm	ment	Date	Date	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Chara	akteristis	sche Tragfäl	higkeitsw	pelastung	Maßge	ebende Q	uerschni	ttswerte			
Nenn-				Zwische	nauflager ¹⁾	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (8	:= 1)		last			schnitts- fläche
8) t _N			Stützm	oment	Auflag	erkraft	Querkraft				llacite
	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	I-	A _g
mm	kNm/m	kN/m	kNm/m		kN	/m	kN/m	kN/m²	cm⁴/m	cm⁴/m	cm²/m
0,75	3,52	5,11	6,75	4,36	20,53	12,77	/	0,087	82,2	87,2	11,05
0,88	4,59	6,60	7,70	5,32	29,27	16,50		0,102	100,7	101,3	12,97
1,00	5,57	7,98	8,58	6,20	37,33	19,95		0,116	117,8	114,4	14,73
1,13	6,32	9,06	9,74	7,04	42,39	22,65		0,131	133,8	129,9	16,65
1,25	7,02	10,06	10,81	7,81	47,06	25,15		0,145	148,5	144,2	18,42
1,50	8,47	12,14	13,04	9,43	56,78	30,34	1	0,173	179,2	174,0	22,10

1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{0}/\gamma_{M}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{0}/\gamma_{M}}\right)^{\varepsilon} \; \leq \; 1$$

2) M/V- Interaktion

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \le 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \le 1$$

$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} > 0.5$$
:

 $\frac{M_{Ed}}{M_{CRER}/\gamma_M} + \frac{2 \cdot V_{Ed}}{V_{WRR}/\gamma_M} -$

3) Sind keine Werte für $M^0_{Rk,B}$ und $R^0_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.

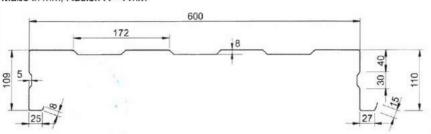
4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.

Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.

6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.

7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen

8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".


⁹⁾ Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

- alle Zwischenauflagerwerte für Windsog um 30%

SAB B110/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Maße in mm, Radien R= 4 mm

Anlage 9 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Bearbeiter:

Nennstreckgrenze des Stahlkernes f. =

320 N/mm²

Abstand der Befestigungen a \$ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Feldmo-		gerkraft 6)		Elastisch	autnenmi	pare Schr	nittgroßen	an Zwisch	enautiage	rn ^{1) 2) 3) 4) 5)}	<i>51</i>
ment	Linddana	goman	Quer-			L	ineare Int	eraktion (ε	= 1)		
			kraft		Stützmo	omente		Z	wischenau	uflagerkräft	е
	$b_A + \ddot{u} =$ 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a.8} = 1	100 mm	I _{a,B} = 3	300 mm
M _{c,Rk,F}	R,	v,Rk	$V_{w,Rk}$	M ⁰ _{Rk,B} M _{c,Rk,B}		M⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	$R_{w,Rk,B}$	R ⁰ _{Rk,B}	R _{w,Rk,B}
kNm/m	kN	/m	kN/m		kNn	n/m			kN	l/m	
3,58	7,52	1	/	5,16	4,90	4,68	4,68	32,20	15,49	57,72	20,11
4,96	10,53	/	/	6,67	6,31	6,54	6,43	53,13	21,66	104,46	28,21
6,23	13,31		/ /	8,07	7,61	8,25	8,04	72,45	27,36	147,61	35,69
7,07	15,11		1	9,16	8,64	9,37	9,13	82,26	31,06	167,60	40,52
7,85	16,78	1		10,17	9,59	10,40	10,14	91,31	34,48	186,05	44,98
9,47	20,24	1		12,27	11,58	12,55	12,23	110,18	41,61	224,49	54,28
-	3,58 4,96 6,23 7,07 7,85	M _{c,Rk,F} R _v (Nm/m kN 3,58 7,52 4,96 10,53 6,23 13,31 7,07 15,11 7,85 16,78	M _{c,Rk,F}	b _A + ü = b _A + ü = 40 mm - V _{w,Rk} M _{c,Rk,F} R _{w,Rk} N/m	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung Maßgebende Querschnittswerte

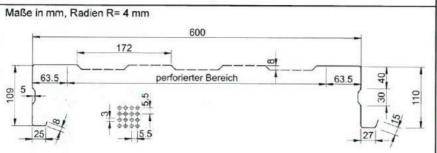
Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
ment	lagerkraft 7)		M/R- Ir	nteraktion (a	:= 1)		last			schnitts- fläche
		Stützm	oment	Auflag	erkraft	Querkraft				1100110
M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺	I- eff	Ag
kNm/m	kN/m	kNm/m		kN	/m	kN/m	kN/m²	cm⁴/m	cm⁴/m	cm²/m
4,73	5,50	9,61	5,25	19,25	13,74		0,089	127,4	119,3	11,30
6,20	7,79	9,66	6,35	35,45	19,48		0,104	149,8	140,9	13,26
7,55	9,91	9,70	7,37	50,41	24,77		0,118	170,4	160,9	15,07
8,57	11,25	11,01	8,37	57,24	28,12		0,134	193,5	182,7	17,03
9,52	12,49	12,23	9,29	63,54	31,22		0,148	214,8	202,8	18,83
11,48	15,07	14,75	11,21	76,67	37.67		0.177	259,2	244.7	22,60
	ment M _{c,Rk,F} kNm/m 4,73 6,20 7,55 8,57 9,52	ment lagerkraft 7) M _{e,Rk,F} R _{w,Rk,A} kNm/m kN/m 4,73 5,50 6,20 7,79 7,55 9,91 8,57 11,25 9,52 12,49	ment lagerkraft 7) M _{e,Rk,F} R _{w,Rk,A} Mº _{Rk,B} kNm/m kN/m kNm 4,73 5,50 9,61 6,20 7,79 9,66 7,55 9,91 9,70 8,57 11,25 11,01 9,52 12,49 12,23	Ment Iagerkraft 7) Stützmoment M _{c,Rk,F} R _{w,Rk,A} M° _{Rk,B} M _{c,Rk,B} kNm/m kNm/m kNm/m 4,73 5,50 9,61 5,25 6,20 7,79 9,66 6,35 7,55 9,91 9,70 7,37 8,57 11,25 11,01 8,37 9,52 12,49 12,23 9,29	Ment Iagerkraft 7) M/R- Interaktion (8) Stützmoment Auflage M _{c,Rk,F} R _{w,Rk,A} M ⁰ _{Rk,B} M _{c,Rk,B} R ⁰ _{Rk,B} kNm/m kNm/m kNm/m kN 4,73 5,50 9,61 5,25 19,25 6,20 7,79 9,66 6,35 35,45 7,55 9,91 9,70 7,37 50,41 8,57 11,25 11,01 8,37 57,24 9,52 12,49 12,23 9,29 63,54	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M/R- Interaktion (ε = 1) Iast M/R- Interaktion (ε = 1) Stützmoment Auflagerkraft Querkraft M _{e,Rk,F} R _{w,Rk,B} M _{e,Rk,B} R _{w,Rk,B} V _{w,Rk} g kNm/m kN/m kN/m kN/m kN/m kN/m² 4,73 5,50 9,61 5,25 19,25 13,74 0,089 6,20 7,79 9,66 6,35 35,45 19,48 0,104 7,55 9,91 9,70 7,37 50,41 24,77 0,118 8,57 11,25 11,01 8,37 57,24 28,12 0,134 9,52 12,49 12,23 9,29 63,54 31,22 0,148	M/R- Interaktion (ε = 1) Iast M/R- Interaktion (ε = 1) Stützmoment Auflagerkraft Querkraft M _{c,Rk,F} R _{w,Rk,B} M _{c,Rk,B} R _{w,Rk,B} V _{w,Rk} g I* _{eff} kNm/m kN/m kN/m kN/m kN/m kN/m kN/m² cm⁴/m 4,73 5,50 9,61 5,25 19,25 13,74 0,089 127,4 6,20 7,79 9,66 6,35 35,45 19,48 0,104 149,8 7,55 9,91 9,70 7,37 50,41 24,77 0,118 170,4 8,57 11,25 11,01 8,37 57,24 28,12 0,134 193,5 9,52 12,49 12,23 9,29 63,54 31,22 0,148 214,8	M/R- Interaktion (ε = 1) M/R- Interaktion (ε = 1) Stützmoment Auflagerkraft Querkraft M _{c,Rk,F} R _{w,Rk,B} M _{c,Rk,B} R _{w,Rk,B} V _{w,Rk} g I + eff I - eff kNm/m kN/m kN/m kN/m kN/m kN/m cm ⁴ /m cm ⁴ /m 4,73 5,50 9,61 5,25 19,25 13,74 0,089 127,4 119,3 6,20 7,79 9,66 6,35 35,45 19,48 0,104 149,8 140,9 7,55 9,91 9,70 7,37 50,41 24,77 0,118 170,4 160,9 8,57 11,25 11,01 8,37 57,24 28,12 0,134 193,5 182,7 9,52 12,49 12,23 9,29 63,54 31,22 0,148 214,8 202,8

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,B}^{o}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{o}/\gamma_{M}}\right)^{\varepsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{CRk,R}/\gamma_M} \le 1$


$$\frac{V_{Ed}}{V_{MBk}/\gamma_M} > 0.5$$

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} \le 0,5 : \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} \le 1 \qquad \frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} > 0,5 : \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} + \left(\frac{2 \cdot V_{Ed}}{V_{w,Rk}/\gamma_{M}} - 1\right)^{2} \le 1$$

- 3) Sind keine Werte für M⁰_{RKB} und R⁰_{RKB} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_e als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_R < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert: - alle Zwischenauflagerwerte für Windsog um 35%

SAB B110/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 10 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Bearbeiter: Leiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

ACCUST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	nittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech- dicke	ment		9	Quer-			L	ineare Inte	eraktion (ε	= 1)		
8)				kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,8} = 10	0 mm	I _{a,B} = 30	00 mm	_{a,B} =	100 mm	I _{a,B} = (300 mm
t _N	M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B}	M _{c,Rk,B}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn				k١	l/m	
0,75	3,44	7,42	/	/	5,16	4,47	3,97	3,97	35,63	14,92	116,33	20,65
0,88	4,73	10,19		/	6,35	5,68	5,71	5,62	51,20	20,49	127,97	26,52
1,00	5,92	12,75	1	/ /	7,44	6,79	7,32	7,14	65,57	25,63	138,72	31,93
1,13	6,72	14,48		/	8,45	7,70	8,31	8,11	74,45	29,10	157,50	36,26
1,25	7,46	16,08			9,38	8,55	9,22	9,00	82,64	32,30	174,84	40,25
1,50	9,00	19,40			11,32	10,32	11,13	10,86	99,72	38,98	210,96	48,57

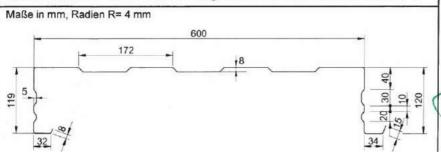
Chara	akteristis	sche Tragfäl	higkeitsw	oelastung	Maßge	bende Q	uerschni	ttswerte			
Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (a	= 1)		last			schnitts- fläche
8)			Stützm	oment	Auflage	erkraft	Querkraft				Hache
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+ eff	I-	Ag
mm	kNm/m	kN/m	kNn	kNm/m kN/m		kN/m	kN/m²	cm ⁴ /m	cm4/m	cm²/m	
0,75	4,12	5,19	9,04	4,94	18,20	12,97	/	0,089	99,6	114,2	11,30
0,88	5,84	7,12	9,14	5,91	31,10	17,81		0,104	118,5	130,9	13,26
1,00	7,42	8,91	9,24	6,81	43,01	22,28		0,118	135,9	146,4	15,07
1,13	8,42	10,12	10,49	7,73	48,83	25,30		0,134	154,3	166,2	17,03
1,25	9,35	11,23	11,65	8,58	54,21 28,08		/-	0,148	171,3	184,5	18,83
1,50	11,28	13,55	14,05	10,36	65,41	33,88		0,177	206,7	222,7	22,60

M/R-Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk,B}}^0/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk,B}}^0/\gamma_{\text{M}}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$


$$\frac{V_{Ed}}{V_{WBk}/\gamma_M}$$
 > 0,5: $\frac{M_{Ed}}{M_{CBkB}/\gamma_M}$

 $\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5: \ \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \le \ 1$

- 3) Sind keine Werte für M^o_{Rk,B} und R^o_{Rk,B} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_s als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert: alle Zwischenauflagerwerte für Windsog um 35%

SAB B120/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 11 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Leiter: Bearbeiter:

FREISTAAT SACHSEN

Nennstreckgrenze des Stahlkernes f., =

Abstand der Befestigungen a \$ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	ittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech-	ment	Liladana	goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	1 _{a,B} =	100 mm	I _{a,B} = 3	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ^o _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	/m	kN/m		kNn	n/m			kN	l/m	
0,75	5,12	7,07	/	1	7,57	5,23	6,79	5,52	28,19	16,16	49,24	20,08
88,0	6,51	10,01		/ /	9,17	6,84	8,51	7,28	46,53	22,81	89,64	28,42
1,00	7,80	12,73		/	10,65	8,32	10,09	8,91	63,45	28,94	126,94	36,11
1,13	8,86	14,45	/		12,09	9,45	11,46	10,12	72,04	32,86	144,13	41,00
1,25	9,83	16,05	/		13,42	10,49	12,72	11,23	79,97	36,48	160,00	45,51
1,50	11,86	19,36		1	16,20	12,65	15,35	13,55	96,50	44,01	193,05	54,92

Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (a	:= 1)		last			schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				lictorio
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+	I-en	Ag
mm	kNm/m	kN/m	kNn	kNm/m kN/m		/m	kN/m	kN/m²	cm4/m	cm4/m	cm ² /m
0,75	5,52	5,66	13,18	5,94	18,02	14,15	1	0,092	171,8	156,0	11,75
0,88	7,20	8,40	12,04	7,13	36,96	21,00		0,108	196,9	184,4	13,79
1,00	8,75	10,93	10,98	8,22	54,44	27,33		0,123	220,0	210,6	15,67
1,13	9,93	12,41	12,47	9,33	61,81	31,03		0,139	249,8	239,1	17,70
1,25	11,03	13,78	13,84	10,36	68,62 34,45			0,154	277,3	265,4	19,58
1,50	13,31	16,63	16,70	12,50	82,79	41,56		0,184	334,6	320,3	23,50

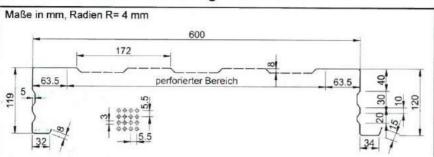
1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Bk,B}^{0}/\chi_{M}} + \left(\frac{F_{Ed}}{R_{Bk,B}^{0}/\chi_{M}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{WBW}/Y_{W}} \le 0.5$$
: $\frac{M_{Ed}}{M_{BBWB}/Y_{W}} \le 1$

$$\frac{V_{Ed}}{V_{...p_1}/v_{H}} > 0.5$$
:


$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für M^{o}_{RkB} und R^{o}_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_s als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für $b_{_{\rm B}}$ < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:

alle Zwischenauflagerwerte für Windsog um 40%

SAB B120/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 12 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: Bearbeiter:

SACHSEN

Abstand der Befestigungen a, ≤ 621 mm9

Nennstreckgrenze des Stahlkernes f., = 320 N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

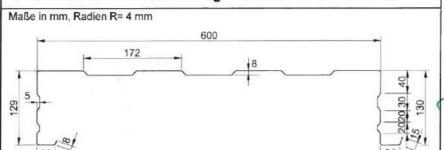
1000 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	ittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech- dicke	ment		9	Quer-			L	ineare Inte	eraktion (ε	= 1)		
8)				kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
t _N		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a,B} =	100 mm	I _{a,B} = 3	300 mm
t _N	M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M° _{Rk,B} M _{c,Rk,B}		M° Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			k٨	l/m	
0,75	5,06	6,83	/	1	6,14	4,62	5,15	4,71	31,13	15,46	91,33	20,08
0,88	6,32	9,51	/	/	7,81	6,05	7,12	6,39	45,13	20,88	105,92	26,53
1,00	7,49	11,99		/- /-	9,35	7,37	8,93	7,94	58,06	25,89	119,38	32,49
1,13	8,50	13,61	/		10,62	8,37	10,14	9,02	65,92	29,40	135,55	36,89
1,25	9,44	15,11	/		11,78	9,29	11,26	10,01	73,18	32,63	150,47	40,95
1,50	11,39	18,23		/	14,22	11,21	13,58	12,08	88.30	39,37	181.56	49,41

Chara	akteristi	sche Tragfä	higkeitsw	pelastung	Maßge	ebende Q	uerschni	ttswerte			
Nenn-		The second secon		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R-I	nteraktion (8	:= 1)		last	AMA		schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				nacie
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+en	I. ett	Ag
mm	kNm/m	kN/m	kNm/m		kN	/m	kN/m	kN/m²	cm4/m	cm4/m	cm²/m
0,75	4,66	5,27	12,26	5,53	16,80	13,18		0,092	150,2	136,2	11,75
0,88	6,15	7,65	11,04	6,51	33,44	19,12		0,108	180,9	171,4	13,79
1,00	7,52	9,84	9,92	7,41	48,80	24,60		0,123	209,2	203,8	15,67
1,13	8,54	11,17	11,26	8,41	55,41	27,93		0,139	237,5	231,4	17,70
1,25	9,48	12,40	12,50	9,34	61,51	31,01		0,154	263,7	256.9	19,58
1,50	11,44	14,97	15,09	11,27	74,22	37,41	1	0,184	318,2	309,9	23,50
							V.				

1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{\text{O}}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{\text{O}}/\gamma_{\text{M}}}\right)^{\varepsilon} \ \leq \ 1$$

2) M/V- Interaktion


$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{CRk,R}/\gamma_M} \le 1$

 $\frac{V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} \leq 0.5 \colon \; \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} > 0.5 \colon \; \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{W,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq \; 1$

- 3) Sind keine Werte für $M^o_{Rk,B}$ und $R^o_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_R < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- 9) Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert: alle Zwischenauflagerwerte f
 ür Windsog um 40%

SAB B130/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 13 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

Abstand der Befestigungen a, ≤ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	ittgrößen	an Zwisch	enauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech-	ment	Litadana	goman	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		Z	Zwischena	uflagerkräft	е
t,		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,8} = 30	0 mm	I _{a,8} =	100 mm	I _{a,B} = 3	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ^o _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN/m		kN/m		kNn	n/m			kN	l/m	
0,75	5,46	6,62	/	1	9,98	5,56	9,66	6,36	24,18	15,43	40,76	20,05
0,88	7,01	9,49			11,67	7,36	10,84	8,14	39,92	22,20	74,82	28,62
1,00	8,44	12,15	1	/ /	13,23	9,03	11,93	9,78	54,45	28,44	106,27	36,53
1,13	9,58	13,80			15,03	10,25	13,54	11,10	61,83	32,30	120,66	41,48
1,25	10,63	15,31			16,68	11,38	15,03	12,32	68,63	35,85	133,94	46,04
1,50	12,83	18,48	/	/	20,13	13,73	18,14	14,87	82,82	43,26	161,62	55,56

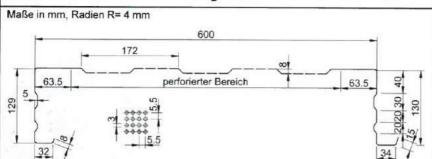
Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung | Maßgebende Querschnittswerte

Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (E = 1)		last			schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				,,ac,,,c
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ^o _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	I-	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm ⁴ /m	cm4/m	cm²/m
0,75	5,93	6,67	10,66	5,81	30,97	16,68		0,094	226,0	194,1	12,00
0,88	7,75	8,67	12,30	7,34	38,91	21,66		0,111	251,9	226,7	14,08
1,00	9,43	10,51	13,82	8,76	46,23	26,27		0,126	275,8	256,8	16,00
1,13	10,71	11,93	15,69	9,95	52,49	29,82		0,142	313,1	291,6	18,08
1,25	11,89	13,24	17,41	11,04	58,27	33,11		0,157	347,6	323,7	20,00
1,50	14,35	15,98	21,01	13,32	70,31	39,95	1	0,188	419,4	390,6	24,00
		185		195			1				

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Ph,B}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Ph,B}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion
$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$


$$\frac{V_{Ed}}{V_{MBH}/Y_M}$$
>0,5: $\frac{M_e}{M_e}$

$$\frac{M_{Ed}}{M_{ed}} + \left(\frac{2 \cdot V_{Ed}}{V_{ed}} - 1\right)^2 \le 1$$

- 3) Sind keine Werte für M^o_{RkB} und R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- Sind für V_{w,Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_n < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- 9) Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{etk} für Auflast um 10%
 - alle Zwischenauflagerwerte für Windsog um 45%

SAB B130/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 14 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

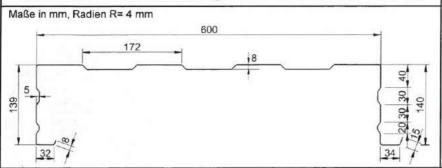
Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	nittgrößen	an Zwisch	nenauflage	rn 1) 2) 3) 4) 5)	6)
blech- dicke	ment		J	Quer-			L	ineare Inte	eraktion (ε	= 1)		
8)				kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
t,		b _A + ü = 40 mm	b _A + ü =		I _{a,8} = 10	0 mm	I _{a,B} = 30	00 mm	I _{s,B} =	100 mm	I _{a,B} = 3	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M° _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			k١	N/m	-
0,75	5,29	6,24	/	/	7,12	4,77	7,32	5,45	26,63	14,71	66,33	19,51
0,88	6,75	8,83		1	9,27	6,42	8,99	7,16	39,07	20,39	83,86	26,55
1,00	8,10	11,23	1	/	11,26	7,95	10,54	8,74	50,55	25,63	100,04	33,05
1,13	9,19	12,75		1	12,78	9,03	11,97	9,92	57,40	29,10	113,59	37,52
1,25	10,21	14,15	1	/	14,19	10,03	13,29	11,02	63,72	32,30	126,10	41,65
1,50	12,32	17,07		/	17,12	12,10	16,03	13,29	76,88	38,98	152,15	50,26

Chara	kteristi	sche Tragfä	higkeitsw	erte für al	hebende	Flächent	pelastung	Maßge	ebende C	uerschni	ttswerte
Nenn-		The same of the sa		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (8	= 1)		last			schnitts- fläche
8)			Stützm	noment	Auflag	erkraft	Querkraft				liderie
- 20101-0-01	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	$R_{w,Rk,B}$	V _{w,Rk}	g	I ⁺ eff	I- eff	Ag
mm	kNm/m	kN/m	kNn	kNm/m		/m	kN/m	kN/m²	cm4/m	cm4/m	cm²/m
0,75	5,11	5,56	10,52	5,37	19,74	13,91	1	0,094	202,5	191,8	12,00
0,88	6,69	7,61	11,59	6,71	31,11	19,02		0,111	228,2	217,8	14,08
1,00	8,14	9,50	12,58	7,94	41,61	23,75		0,126	252,0	241,7	16,00
1,13	9,25	10,79	14,29	9,02	47,24	26,96		0,142	286,1	274,5	18,08
1,25	10,26	11,97	15,86	10,01	52,44	29,93	1	0,157	317,6	304,7	20,00
1,50	12,39	14,45	19,14	12,08	63,28	36,12		0,188	383,2	367,6	24,00
	1						17.0			I	

1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^0/\gamma_M} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^0/\gamma_M}\right)^{\varepsilon} \ \leq \ 1$$


2) M/V- Interaktion

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für $M^{o}_{Rk,B}$ und $R^{o}_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- Sind f
 ür V_{w.Rk} keine Werte angegeben, entf
 ällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_e < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- 9) Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{efk} für Auflast um 10% - alle Zwischenauflagerwerte für Windsog um 45%
- Stand: 15. April 2016

SAB B140/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 15 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Leiter: Bearbeiter:

Nennstreckgrenze des Stahlkernes f., = 320 N/mm

Abstand der Befestigungen a, ≤ 621 mm9

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	oare Schr	ittgrößen	an Zwisch	enauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech-	ment	Lindadiid	gondan	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft	/	Stützmo	omente		Z	Zwischena	uflagerkräft	е
		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a,8} =	100 mm	I _{s,B} = ;	300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			kN	1/m	
0,75	5,79	6,17	/	/	12,39	5,89	12,53	7,21	20,17	14,70	32,28	20,02
0,88	7,50	8,98	/	[]	14,17	7,89	13,17	9,00	33,32	21,59	60,00	28,83
1,00	9,07	11,57	/		15,82	9,74	13,76	10,65	45,46	27,95	85,60	36,95
1,13	10,30	13,14			17,96	11,05	15,63	12,09	51,61	31,73	97,19	41,95
1,25	11,43	14,58	/		19,94	12,27	17,35	13,42	57,30	35,23	107,89	46,57
1,50	13,80	17,60		/	24,06	14,81	20,93	16,19	69,13	42,50	130,18	56,19

Chara	kteristi	sche Tragfäl	higkeitsw	pelastung	Maßge	ebende Q	uerschni	ttswerte			
Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (8	:= 1)		last			schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				lidono
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	I- _{eff}	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m	cm⁴/m	cm²/m
0,75	6,34	7,68	8,15	5,68	43,92	19,21	1	0,097	280,3	232,2	12,38
0,88	8,30	8,93	12,57	7,56	40,85	22,32		0,114	307,0	269,0	14,52
1,00	10,12	10,08	16,65	9,30	38,02	25,20	/	0,130	331,6	303,0	16,50
1,13	11,49	11,45	18,91	10,56	43,17	28,61		0,146	376,5	344,0	18,65
1,25	12,75	12,71	20,99	11,72	47,93	31,77		0,162	418,0	381,9	20,63

1) M/R- Interaktion

1,50

15,39

$$\frac{M_{Ed}}{M_{Rk,R}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,R}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

15,33

2) M/V- Interaktion

14,14

$$\frac{V_{Ed}}{V_{HB}/Y_{M}} \le 0.5$$
: $\frac{M_{Ed}}{M_{BBB}/Y_{M}} \le 1$

57.83

38,33

$$\frac{V_{Ed}}{V_{...ph}/Y_{H}} > 0.5$$

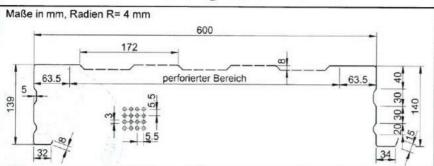
0,194

$$\frac{M_{Ed}}{M_{CRk,B}/\gamma_M} + \left(\frac{2 \cdot V_{Ed}}{V_{W,Rk}/\gamma_M} - 1\right)^2 \le 1$$

460,8

24,75

504,3


- 3) Sind keine Werte für M^o_{Rk,B} und R^o_{Rk,B} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w,Rk} keine Werte angegeben, entfällt dieser Nachweis.

25,32

- Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.</p>
- ⁶⁾ Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{sf.k} für Auflast um 15%
 - alle Zwischenauflagerwerte für Windsog um 50%

SAB B140/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 16 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

eiter: Bearbeiter:

Preistaat Sachsen

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

			35									
Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwiscl	nenauflage	ern 1) 2) 3) 4) 5)	6)
blech- dicke	ment		J	Quer-			L	ineare Int	eraktion (a	: = 1)		
8)				kraft		Stützmo	omente			Zwischena	uflagerkräft	.e
t		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,B} =	100 mm	I _{a,8} = ;	300 mm
t _N	M _{c,Rk,F}	R	w,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	507.000	l/m	kN/m		kNn	n/m			kN	V/m	
0,75	5,52	5,65	/	/	8,09	4,92	9,49	6,19	22,13	13,96	41,33	18,94
0,88	7,17	8,15		1	10,73	6,80	10,87	7,93	33,01	19,89	61,81	26,56
1,00	8,71	10,46		/	13,17	8,54	12,15	9,54	43,04	25,37	80,71	33,60
1,13	9,88	11,88			14,95	9,69	13,80	10,83	48,87	28,81	91,64	38,15
1,25	10,97	13,19	/		16,59	10,76	15,32	12,02	54,25	31,98	101,73	42,35
1,50	13,24	15,91			20,02	12,98	18,48	14,51	65,46	38,58	122,74	51,10
			/	V								

Chara	kteristi	sche Tragfä	belastung	Maßge	ebende Q	uerschni	ttswerte				
Nenn-	Feldmo-			Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R-I	nteraktion (a	:= 1)		last			schnitts- fläches
8)			Stützm	oment	Auflag	erkraft	Querkraft				ildono.
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I*en	l- eff	A _g
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m	cm⁴/m	cm²/m
0,75	5,56	5,85	8,78	5,20	22,69	14,64	/	0,097	254,8	247,4	12,38
0,88	7,23	7,57	12,14	6,90	28,79	18,93		0,114	275,6	264,2	14,52
1,00	8,77	9,16	15,25	8,47	34,42	22,90		0,130	294,7	279,6	16,50
1,13	9,96	10,40	17,31	9,62	39,08	26,00		0,146	334,6	317.5	18.65

28,86

34.82

1) M/R- Interaktion

11,05

13,33

1,25

1,50

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{\text{0}}/\gamma_{M}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{\text{0}}/\gamma_{M}}\right)^{\varepsilon} \leq 1$$

11,54

13,93

2) M/V- Interaktion

10,68

12,89

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} {\leq} 0.5 \colon \frac{M_{\text{Ed}}}{M_{c,\text{Rk,B}}/\gamma_{\text{M}}} {\leq} 1$$

43,38

52,34

 $\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} > 0,5$:

0,162

0.194

 $\frac{M_{Ed}}{M_{ABKB}/Y_M} + \frac{2 \cdot V_{Ed}}{V_{WBV}/Y_M} -$

352,5

425,3

20,63

24.75

371,5

448.2

- Sind keine Werte für $M^0_{Rk,B}$ und $R^0_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w Rk} keine Werte angegeben, entfällt dieser Nachweis.

19.22

23,19

- Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.</p>
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{etk} für Auflast um 15%
 - alle Zwischenauflagerwerte für Windsog um 50%

SAB B145/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Maße in mm, Radien R= 4 mm

Anlage 17 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Bearbeiter:

Abstand der Befestigungen a, ≤ 621 mm9

Nennstreckgrenze des Stahlkernes f., =

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

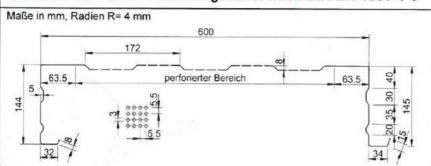
Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	ittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)
blech-	ment		90	Quer-			L	ineare Inte	eraktion (ε	= 1)		
dicke 8)				kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	0 mm	I _{a,B} = 30	00 mm	I _{a,B} =	100 mm		300 mm
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M° _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			k١	l/m	
0,75	5,96	5,94	/		13,59	6,05	13,96	7,63	18,17	14,33	28,04	20,01
0,88	7,74	8,72			15,42	8,15	14,33	9,42	30,02	21,28	52,59	28,93
1,00	9,39	11,28	/		17,11	10,09	14,68	11,08	40,96	27,70	75,26	37,16
1,13	10,66	12,81	1	/	19,43	11,46	16,67	12,58	46,51	31,45	85,45	42,19
1,25	11,84	14,22			21,57	12,72	18,50	13,97	51,63	34,91	94,86	46,84
1,50	14,28	17,16			26,02	15,35	22,33	16,85	62,29	42,13	114,46	56,51

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung | Maßgebende Querschnittswerte Zwischenauflager 1) 2) 3) 4) 7) Nenn- Feldmo- Endauf-Eigen-Trägheitsmomente blech- ment lagerkraft 7) schnittslast

dicke	mont	lagerkiait		M/R- I	nteraktion (8	: = 1)		100			fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$	g	+ eff	I-en	Ag
3.50.73	kNm/m	kN/m	kNn	n/m	kN.	/m	kN/m	kN/m²	cm⁴/m	cm⁴/m	cm²/m
0,75	6,54	8,19	6,89	5,61	50,39	20,47		0,097	307,4	251,2	12,38
0,88	8,58	9,06	12,70	7,67	41,83	22,65	/	0,114	334,5	290,1	14,52
1,00	10,46	9,87	18,07	9,57	33,92	24,67		0,130	359,5	326,1	16,50
1,13	11,88	11,20	20,52	10,87	38,51	28,01		0,146	408,2	370,3	18,65
1,25	13,18	12,44	22,78	12,06	42,75	31,09		0,162	453,1	411,0	20,63
1,50	15,91	15,01	27,48	14,55	51,59	37,52		0,194	546,7	495,9	24,75
		200					1				

1) M/R-Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk,B}}^{0}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk,B}}^{0}/\gamma_{\text{M}}}\right)^{\varepsilon} \leq 1$$


$$\frac{V_{Ed}}{V_{w,Rk}/y_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{c,Rk,R}/y_M} \le 1$ $\frac{V_{Ed}}{V_{w,Rk}/y_0}$

2) M/V- Interaktion
$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} \leq 0,5 \colon \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} \leq 1 \qquad \frac{V_{Ed}}{V_{w,Rk}/\gamma_{M}} > 0,5 \colon \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_{M}} + \left(\frac{2 \cdot V_{Ed}}{V_{w,Rk}/\gamma_{M}} - 1\right)^{2} \leq 1$$

- 4) Sind für V keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_e als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_e < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{efk} für Auflast um 20%
 - alle Zwischenauflagerwerte für Windsog um 50%

SAB B145/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 18 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter:

Bearbeiter: SACHSEN

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

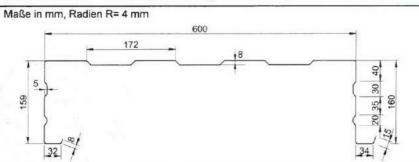
Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)
ment		9	Quer-			L	ineare Inte	eraktion (ε	= 1)		
		,	kraft		Stützmo	omente		2	Zwischena	uflagerkräft	е
	b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{e,B} =	100 mm	I _{a,8} = 3	300 mm
M _{c,Rk,F}	R,	v,Rk	V _{w,Rk}	M ^o _{Rk,B} M _{c,Rk,B}		M ⁰ Rk,B	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R° _{Rk,B}	R _{w,Rk,B}
kNm/m	kN	l/m	kN/m							l/m	LI MANACADA
5,63	5,35		1	8,58	4,99	10,57	6,56	19,88	13,58	28,83	18,65
7,39	7,81		/ /	11,46	6,99	11,81	8,32	29,97	19,64	50,78	26,57
9,01	10,08			14,12	8,83	12,96	9,94	39,29	25,24	71,04	33,88
10,23	11,45	/		16,03	10,03	14,72	11,29	44,61	28,66	80,66	38,47
11,36	12,71			17,80	11,13	16,34	12,53	49,52	31,81	89,54	42,70
13,70	15,33	/	/	21,47	13,43	19,71	15,12	59,75	38,39	108,04	51,53
	M _{c,Rk,F} kNm/m 5,63 7,39 9,01 10,23 11,36	ment b _A + ü = 40 mm M _{c,Rk,F} R _v kNm/m kN 5,63 5,35 7,39 7,81 9,01 10,08 10,23 11,45 11,36 12,71	ment b _A + ü = b _A + ü = 40 mm - M _{c,Rk,F} R _{w,Rk} kNm/m kN/m 5,63 5,35 7,39 7,81 9,01 10,08 10,23 11,45 11,36 12,71	ment	Date Date	Date	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nenn-	Feldmo-	Endauf-		Zwische	nauflager 1)	2) 3) 4) 7)		Eigen-	Trägheits	momente	Quer-
blech- dicke	ment	lagerkraft 7)		M/R- I	nteraktion (a	= 1)		last	J		schnitts- fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				liacite
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺	I- eff	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm⁴/m	cm ⁴ /m	cm²/m
0,75	5,78	6,00	7,91	5,12	24,16	15,00	1	0,097	281,0	275,2	12,38
0,88	7,50	7,55	12,42	7,00	27,62	18,88		0,114	299,3	287,4	14,52
1,00	9,08	8,99	16,58	8,74	30,82	22,47		0,130	316,1	298,6	16,50
1,13	10,31	10,21	18,83	9,92	34,99	25,51		0,146	358,9	339,0	18,65
1,25	11,44	11,33	20,90	11,02	38,85	28,32		0,162	398.4	376.4	20,63
1,50	13,81	13,67	25,22	13,29	46,87	34,17	1	0,194	480,7	454,1	24,75

M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^0/\gamma_M} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^0/\gamma_M}\right)^{\varepsilon} \ \leq \ 1$$

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5: \frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le 1$$


$$\frac{V_{Ed}}{V_{WRk}/\gamma_M} > 0.5$$
:

 $\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$

- 3) Sind keine Werte für $M^{o}_{_{RK,B}}$ und $R^{o}_{_{RK,B}}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_g als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm. im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{et.k} für Auflast um 20% - alle Zwischenauflagerwerte für Windsog um 50%

SAB B160/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 19 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: Bearbeiter:

Abstand der Befestigungen a, ≤ 621 mm9

Nennstreckgrenze des Stahlkernes f., =

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft ⁶⁾		Elastisch	aufnehm	bare Schr	nittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)	
blech-	ment	Lindania	gonian	Quer-	Quer- Lineare Interaktion (ε = 1)								
dicke 8)				kraft	Stützmomente				2	Zwischena	uflagerkräft	е	
		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,B} =	I _{a,B} = 100 mm		I _{a.8} = 300 mm	
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M ⁰ _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m	kN	l/m	kN/m		kNm/m				k۱	l/m		
0,75	6,85	5,26	/	1	15,63	6,96	16,05	8,77	16,78	13,23	27,98	19,97	
0,88	8,91	7,94	/	/	17,73	9,37	16,48	10,84	28,73	20,37	53,15	29,24	
1,00	10,80	10,41		//	19,68	11,60	16,88	12,74	39,86	26,96	76,54	37,79	
1,13	12,26	11,82	1	/ /	22,34	13,17	19,17	14,47	45,26	30,61	86,90	42,91	
1,25	13,61	13,12			24,80	14,63	21,28	16,06	50,24	33,98	96,47	47,63	
1,50	16,42	15,83	/	/	29,92	17,65	25,67	19,38	60,62	41,00	116,40	57,47	
			/	/									

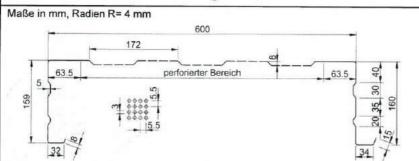
Nenn-				Zwische	nauflager 1)	Eigen-	Trägheitsmomente		Quer- schnitts-			
blech-				M/R- Interaktion ($\varepsilon = 1$)								
8)				Stützm	oment	Auflagerkraft		Querkraft				fläche
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+ eff	I- ^{ett}	Ag	
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m cm4/n		cm²/m	
0,75	7,52	8,19	7,92	6,45	50,39	20,47	1	0,100	387,3	316,5	12,75	
0,88	9,87	9,05	14,61	8,82	41,78	22,63		0,117	421,5	365,6	14,96	
1,00	12,03	9,85	20,78	11,01	33,86	24,63		0,133	453,0	410,9	17,00	
1,13	13,66	11,18	23,59	12,50	38,45	27,96		0,151	514,3	466,5	19,21	
1,25	15,16	12,42	26,19	13,87	42,68	31,04		0,167	570,9	517,9	21,25	
1,50	18,29	14,98	31,60	16,74	51,50	37,45	1/	0,200	688,9	624,9	25,50	

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,R}^0/\gamma_M} + \left(\frac{F_{Ed}}{R_{Rk,R}^0/\gamma_M}\right)^{\epsilon} \le 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{W,BF}/\gamma_{M}} \le 0.5$$
: $\frac{M_{Ed}}{M_{C,BF,B}/\gamma_{M}} \le 1$


$$\frac{V_{Ed}}{V_{HPk}/\gamma_M} > 0.5$$
:

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0,5 \colon \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für M^o_{RkB} und R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- Sind für V_{w,Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_s < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm, im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I für Auflast um 20%
 - alle Zwischenauflagerwerte für Windsog um 50%

SAB B160/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Anlage 20 zum Prüfbescheid **ALS TYPENENTWURF**

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

FREISTA Bearbeiter:

Nennstreckgrenze des Stahlkernes f., =

320 N/mm²

Abstand der Befestigungen a, ≤ 621 mm9)

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

									10.7				
Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehm	bare Schr	nittgrößen	an Zwisch	nenauflage	rn ^{1) 2) 3) 4) 5)}	6)	
blech- dicke	ment		J	Quer-	NOTIFICATION OF THE PROPERTY O								
8)				kraft	Stützmomente				7	Zwischena	uflagerkräft	е	
		b _A + ü = 40 mm	253		I _{a.B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,B} =	I _{a,B} = 100 mm		I _{a,B} = 300 mm	
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M° Rk,B M c,Rk,B		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m	kN	l/m	kN/m	kNm/m				kl*	V/m			
0,75	6,47	4,46	/		9,87	5,74	12,16	7,54	18,23	12,45	27,50	17,79	
0,88	8,50	6,79	/		13,18	8,03	13,58	9,57	28,86	18,90	51,05	26,59	
1,00	10,36	8,93			16,24	10,15	14,90	11,43	38,68	24,85	72,79	34,71	
1,13	11,76	10,14	1		18,44	11,53	16,92	12,98	43,92	28,22	82,65	39,41	
1,25	13,06	11,26		/	20,47	12,80	18,79	14,41	48,76	31,32	91,74	43,75	
1,50	15,76	13,59	/		24,70	15,44	22,67	17,38	58,83	37,79	110,70	52,79	
			V	/									

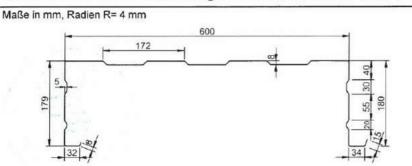
Chara	kteristis	sche Tragfäl	higkeitsw	oelastung	Maßge	ebende Q	uerschni	ittswerte			
Nenn- blech-	Feldmo- ment	Endauf- lagerkraft 7)		DOLANS D	nauflager 1) nteraktion (8	100		Eigen- last	Trägheits	momente	Quer- schnitts-
dicke 8)		-	Stützm		Auflagerkraft Querkraft						fläche
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R ^o _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I ⁺ eff	l' _{eff}	A _g
mm	kNm/m	kN/m	kNn		kN	370-YOR-ORNES	kN/m	kN/m²	cm ⁴ /m	1980. (1980)	
0,75	6,65	6,00	9,10	5,89	24,16	15,00	1	0,100	354,1	346,8	cm²/m 12,75
0,88	8,62	7,57	14,28	8,05	27,68	18,93		0,117	377,1	362,1	14,96
1,00	10,44	9,02	19,07	10,05	30,93	22,55		0,133	398,3	376,2	17,00
1,13	11,86	10,24	21,65	11,41	35,12	25,61		0,151	452.2	427.2	19,21
1,25	13,16	11,37	24,03	12,67	38,99	28,42	1	0,167	502.0	474,2	21.25
1,50	15,88	13,72	29,00	15,29	47,04	34,30	1	0,200	605,7	572,2	25,50

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,B}^{o}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{o}/\gamma_{M}}\right)^{\varepsilon} \ \leq \ 1$$

2) M/V- Interaktion

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \! \leq \! 0.5 \! : \; \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! \leq \! 1$$


$$\frac{V_{Ed}}{V_{WBb}/Y_W} > 0.5$$

$$\frac{M_{Ed}}{M_{CRk,B}/\gamma_M} + \left(\frac{2 \cdot V_{Ed}}{V_{W,Bk}/\gamma_M} - 1\right)^2 \le 1$$

- 3) Sind keine Werte für $M^0_{Rk,B}$ und $R^0_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- ⁵⁾ Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_s < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- 6) Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung in der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".
- Für dreischalige Konstruktionen mit Befestigung der Außenschale über Hutprofile mit einer Höhe von höchstens 40 mm. im Abstand von max. 1000 mm, werden die in der Tabelle aufgetragenen Werte wie folgte abgemindert:
 - die Trägheitsmomente I_{efk} für Auflast um 20%

SAB B180/600

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Nennstreckgrenze des Stahlkernes f., =

Anlage 21 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik

Leipzig, den 05.01.2021 Leiter: Bearbeiter:

Abstand der Befestigungen a. ≤ 621

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

197	Feldmo-	Endaufla	gerkraft 6)		Elastisch aufnehmbare Schnittgrößen an Zwischenauflagern 1) 2) 3) 4) 5) 6)								
blech-	ment		30	Quer-	Quer- Lineare Interaktion (ε = 1)								
dicke 8)				kraft	Stützmomente				2	Zwischena	uflagerkräft	e	
		$b_A + \ddot{u} = b_A + \ddot{u} = 40 \text{ mm}$			I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a,B} =	100 mm	I _{a,8} = 300 mm		
t _N	M _{c,Rk,5}	R	v,Rk	V _{w,Rk}	M ^o _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	
mm	kNm/m		l/m	kN/m		kNm/m			100000000000000000000000000000000000000	k۱	V/m		
0,75	7,34	5,94	/	/	16,67	7,42	17,12	9,36	18,17	14,33	28,04	20,01	
0,88	9,62	8,72	/	/	18,94	10,01	17,60	11,57	30,02	21,28	52,59	28,93	
1,00	11,65	11,28		/	21,02	12,40	18,04	13,61	40,96	27,70	75,26	37,16	
1,13	13,23	12,81	/	/	23,88	14,08	20,49	15,46	46,51	31,45	85,45	42,19	
1,25	14,68	14,22	/	1	26,52	15,64	22,75	17,17	51,63	34,91	94,86	46,84	
1,50	17,72	17,16		/	32,02	18,88	27,47	20,73	62,29	42,13	114,46	56,51	
			1										

CI	narakter	istische	Tragfäl	higkeitswerte für abhebende Flächenbelastung	Maßge	ebende Querschni	ittswerte
Ne	nn- Feld	mo- En	dauf-		Eigen-	Trägheitsmomente	Quer-
ble	ch- me	ent lager	kraft 7)	M/R_{-} Interaction (s = 1)	last		schnitts-

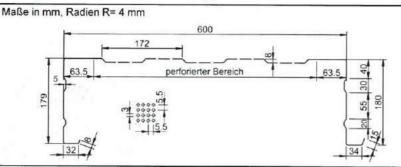
dicke		lagerrian		M/R- I	nteraktion (8	: = 1)		1001			fläche
8)			Stützm	oment	Auflag	erkraft	Querkraft				200000000000000000000000000000000000000
t _N	M _{c,Rk,F}	R _{w,Rk,A}	M° _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I+ eff	I-eff	Ag
mm	kNm/m	kN/m	kNn	n/m	kN	/m	kN/m	kN/m²	cm4/m	cm⁴/m	cm ² /m
0,75	8,02	8,19	8,48	6,91	50,39	20,47	1	0,104	467,5	374,6	12,54
0,88	10,54	9,06	15,78	9,53	41,83	22,65		0,122	508,2	432,9	14,84
1,00	12,85	9,87	22,42	11,87	33,92	24,67		0,139	546,2	486,6	16,96
1,13	14,60	11,20	25,46	13,48	38,51	28,01		0,157	620,2	552,7	19,26
1,25	16,21	12,44	28,26	14,97	42,75	31,09		0,173	688,4	613,7	21,38
1,50	19,57	15,01	34,10	18,06	51,59	37,52	1/	0,208	830,7	740,8	25,79
	September 60	0.0000000000000000000000000000000000000		1000		77.	17	5-577		100	55

1) M/R- Interaktion

$$\frac{M_{Ed}}{M_{Dh,e}^{0}/y_{M}} + \left(\frac{F_{Ed}}{R_{Dh,e}^{0}/y_{M}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{Ed}}{V_{V_{Ed}}/\gamma_{V_{E}}} \le 0.5$$
: $\frac{M_{Ed}}{M_{A_{E}} p_{A_{E}}/\gamma_{V_{E}}} \le 1$


$$\frac{V_{Ed}}{V_{ex}/V_{ex}} > 0,5$$
:

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0.5 : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5 : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^2 \leq 1$$

- 3) Sind keine Werte für M^o_{RkB} und R^o_{RkB} angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w.Rk} keine Werte angegeben, entfällt dieser Nachweis.
- 5) Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- Verbindung mit der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".

SAB B180/600 P

Querschnitts- und Bemessungswerte nach DIN EN 1993-1-3

Nennstreckgrenze des Stahlkernes f_{y,k} =

320 N/mm²

Anlage 22 zum Prüfbescheid ALS TYPENENTWURF

in baustatischer Hinsicht geprüft. Prüfbescheid Nr. T21-001 Landesdirektion Sachsen

Landesstelle für Bautechnik Leipzig, den 05.01.2021

Leiter: FREISTAAT SACHSEN

Abstand der Befestigungen a, ≤ 621 mm

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung

Nenn-	Feldmo-	Endaufla	gerkraft 6)		Elastisch	aufnehml	bare Schr	nittgrößen	an Zwisch	nenauflage	rn 1) 2) 3) 4) 5)	6)
blech- dicke	ment		3	Quer-	AND CONTRACTOR OF THE PROPERTY							
8)				kraft	Stützmomente				Z	Zwischena	uflagerkräft	е
		b _A + ü = 40 mm	b _A + ü =		I _{a,B} = 10	00 mm	I _{a,B} = 30	00 mm	I _{a.B} = 100 mm		I _{a,B} = 300 mm	
t _N	M _{c,Rk,F}	R	v,Rk	V _{w,Rk}	M° _{Rk,B} M _{c,Rk,B}		M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}
mm	kNm/m	kN	l/m	kN/m		kNn	n/m			kN	l/m	
0,75	6,94	5,35	/	1	10,38	6,04	12,79	7,94	19,88	13,58	28,83	18,65
0,88	9,28	7,81	/		13,96	8,51	14,38	10,13	29,97	19,64	50,78	26,57
1,00	11,07	10,08	/		17,23	10,78	15,82	12,13	39,29	25,24	71,04	33,88
1,13	12,57	11,45	/		19,57	12,24	17,96	13,77	44,61	28,66	80,66	38,47
1,25	13,95	12,71			21,72	13,58	19,94	15,29	49,52	31,81	89,54	42,70
1,50	16,84	15,33	1		26,21	16,39	24,05	18,45	59,75	38,39	108,04	51,53
			/									

Nenn-	Feldmo-	dmo- Endauf-		Zwischenauflager 1) 2) 3) 4) 7)						Trägheitsmomente	
blech- dicke	ment	lagerkraft 7)		terestes to	nteraktion (a			Eigen- last	rragnetismomente		Quer- schnitts- fläche
8)	8)		Stützm	oment	Auflag	erkraft	Querkraft				llacite
t _N	$\mathbf{M}_{c,Rk,F}$	R _{w,Rk,A}	M ⁰ _{Rk,B}	M _{c,Rk,B}	R ⁰ _{Rk,B}	R _{w,Rk,B}	V _{w,Rk}	g	I* eff	l- eff	Ag
mm	kNm/m	kN/m	kNn	n/m	kN.	/m	kN/m	kN/m²	2 cm ⁴ /m cm ⁴ /m		cm²/m
0,75	7,00	6,00	9,75	6,31	24,16	15,00	1	0,093	423,2	414,4	9,42
0,88	9,13	7,55	15,60	8,79	27,62	18,88	/	0,109	450,3	432,8	11,15
1,00	11,08	8,99	20,37	10,74	30,82	22,47		0,123	475,7	449,3	12,74
1,13	12,58	10,21	23,13	12,19	34,99	25,51		0,139	540,1	509.8	14,46
1,25	13,97	11,33	25,68	13,54	38,85	28,32		0.154	599.5	565.5	16,06
1,50	16,85	13,67	30,98	16,33	46,87	34,17	/	0,185	723,4	681,6	19,38

1) M/R- Interaktion

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{\text{o}}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{\text{o}}/\gamma_{\text{M}}}\right)^{\epsilon} \leq 1$$

2) M/V- Interaktion

$$\frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \! \leq \! 0.5 \! : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! \leq \! 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \! > \! 0.5 \! : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \! \left(\frac{2 \! \cdot \! V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \! - \! 1 \right) \! = \! 0.5 \! : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \! \left(\frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \! 1 \right) \! = \! 0.5 \! : \frac{M_{\text{Ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \hspace 0.5 \! : \frac{M_{\text{ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \hspace 0.5 \! : \frac{M_{\text{ed}}}{M_{\text{c,Rk,B}}/\gamma_{\text{M}}} \! + \hspace 0.5 \! : \frac{M_{\text{ed}}}{M_{\text{ed}}/\gamma_{\text{M}}} \! + \hspace 0.5 \!: \frac{M_{\text{ed}}}{M_{\text{ed}}/\gamma_{\text{M}}} \! + \hspace 0.5 \! : \frac{M_{\text{ed}}}{M_$$

- 3) Sind keine Werte für $M^o_{Rk,B}$ und $R^o_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen.
- 4) Sind für V_{w Rk} keine Werte angegeben, entfällt dieser Nachweis.
- Für kleinere Zwischenauflagerbreiten b_B als angegeben, müssen die aufnehmbaren Tragfähigkeitswerten linear im entsprechenden Verhältnis reduziert werden. Für b_B < 10 mm, z.B. bei Rohren, darf maximal 10 mm eingesetzt werden.
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- 7) Verbindung mit der Unterkonstruktion in jedem anliegenden Gurt mit mindestens 2 Verbindungselementen
- 8) Blechdicke: Minustoleranz nach DIN EN 10143:2006, Tabelle 2 "Eingeschränkte Grenzabmaße (S)".